Tabla de contenido
- 1 ¿Qué es equivalencia lógica ejemplos?
- 2 ¿Cuándo son proposiciones equivalentes?
- 3 ¿Cómo demostrar una equivalencia logica?
- 4 ¿Cómo saber si dos fórmulas son equivalentes?
- 5 ¿Qué es implicación y equivalencia?
- 6 ¿Cómo se escribe lógicamente equivalente?
- 7 ¿Cuál es la equivalencia lógica entre dos proposiciones?
¿Qué es equivalencia lógica ejemplos?
Equivalencias lógicas
Equivalencia | Nombre |
---|---|
p∨q≡q∨p p∧q≡q∧p | Leyes de conmutación |
(p∨q)∨r≡p∨(q∨r) (p∧q)∧r≡p∧(q∧r) | Leyes de asociación |
p∨(q∧r)≡(p∨q)∧(p∨r) p∧(q∨r)≡(p∧q)∨(p∧r) | Leyes de distribución |
﹁(p∧q)≡﹁p∨﹁q ﹁(p∨q)≡﹁p∧﹁q | Leyes de De Morgan |
¿Cuándo son proposiciones equivalentes?
1 Decimos que dos proposiciones son equivalentes cuando tienen la misma tabla de verdad (en todas sus interpretaciones). También decimos que dos proposiciones son equivalentes cuando la bicondicional que se forma entre ellas es una tautología y viceversa.
¿Cómo demostrar una equivalencia logica?
Dos fórmulas lógicas son equivalentes si tienen los mismos valores de verdad para todos los posibles valores de verdad de sus componentes atómicos. Diremos que dos proposiciones P y Q son lógicamente equivalentes si es una tautología, es decir, si las tablas de verdad de P y Q son iguales.
¿Cómo se simboliza una equivalencia?
En la notación simbólica se representa mediante los signos ⇄ ≡ ∼ Por ejemplo, los enunciados “un número es divisible por 6” (A), y “un número es divisible por 2 y por 3” (B) son equivalentes (A ≡ B), lo cual puede expresarse también en la forma: “un numero es divisible por 6 si y sólo si es divisible por 2 y por 3”.
¿Cómo saber si dos proposiciones son equivalentes?
Una proposición es lógicamente equivalente a otra cuando cada una de las asignaciones de valores de verdad a las proposiciones simples que las componen genera el mismo valor de verdad en ambas proposiciones. En otras palabras, dos expresiones son lógicamente equivalentes si sus tablas de verdad son iguales.
¿Cómo saber si dos fórmulas son equivalentes?
1 Si a los dos miembros de una ecuación se les suma o se les resta una misma cantidad, la ecuación es equivalente a la dada. 2 Si a los dos miembros de una ecuación se les multiplica o se les divide una misma cantidad, la ecuación es equivalente a la dada.
¿Qué es implicación y equivalencia?
La noción de implicación lógica es esencial para formalizar los razonamientos deductivos. Y la de equivalencia permite hacer transformaciones sintácticas de las sentencias sin perder su semántica.
¿Cómo se escribe lógicamente equivalente?
3.1.5 Equivalencias Lógicas. •Definición: Dos formas proposicionales P y Q se dicen lógicamente equivalentes, y se escribe P ≡ Q, si sus tablas de verdad coinciden. El programa está bien escrito y bien documentado. El programa está bien documentado y bien escrito.
¿Qué es la equivalencia lógica?
La equivalencia lógica es diferente a la equivalencia material, aunque ambos conceptos estén estrechamente relacionados. Sea T una verdad lógica y F una falsedad lógica: Equivalencias lógicas que involucran declaraciones condicionales: Equivalencias lógicas que involucran bicondicionales: Las dos sentencias siguientes son lógicamente equivalentes:
¿Cuáles son las fórmulas lógicas equivalentes?
Dos fórmulas lógicas son equivalentes si tienen los mismos valores de verdad para todos los posibles valores de verdad de sus componentes atómicos. Diremos que dos proposiciones P y Q son lógicamente equivalentes si es una tautología, es decir, si las tablas de verdad de P y Q son iguales.
¿Cuál es la equivalencia lógica entre dos proposiciones?
La equivalencia lógica entre dos proposiciones siempre es verdadera. La bicondicional de dos proposiciones p p y q q puede expresarse como una identidad del tipo (p → q)∧ (q → p) ( p → q) ∧ ( q → p) .